Wednesday 8 November 2017

Autoregressive moving average estimation


A documentação é a média incondicional do processo, e x03C8 (L) é um polinômio racional, de grau infinito de lag, (1 x03C8 1 Lx03C8 2 L 2 x 2026). Nota: A propriedade Constant de um objeto modelo arima corresponde a c. E não a média incondicional 956. Por decomposição de Wolds 1. A equação 5-12 corresponde a um processo estocástico estacionário desde que os coeficientes x03C8 i sejam absolutamente somaveis. Este é o caso quando o polinômio AR, x03D5 (L). É estável. O que significa que todas as suas raízes estão fora do círculo unitário. Além disso, o processo é causal desde que o polinômio MA é invertido. O que significa que todas as suas raízes estão fora do círculo unitário. Econometrics Toolbox reforça a estabilidade e a invertibilidade dos processos ARMA. Quando você especifica um modelo ARMA usando arima. Você obtém um erro se você inserir coeficientes que não correspondem a um polinômio AR estável ou polinômio MA reversível. Similarmente, a estimativa impõe restrições de estacionaridade e de invertibilidade durante a estimativa. Referências 1 Wold, H. Um estudo na análise de séries estacionárias do tempo. Uppsala, Suécia: Almqvist amp Wiksell, 1938. Selecione seu país8.4 Modelos de média móvel Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). É claro que não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só mudará a escala da série, não os padrões. É possível escrever qualquer modelo AR (p) estacionário como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e amptext final Fornecido -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Modelos Invertiveis não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R cuidará dessas restrições ao estimar os modelos.8.3 Modelos auto-regressivos Em um modelo de regressão múltipla, projetamos a variável de interesse usando uma combinação linear de preditores. Em um modelo de autorregressão, projetamos a variável de interesse usando uma combinação linear de valores passados ​​da variável. O termo regressão automática indica que é uma regressão da variável contra si mesma. Assim, um modelo autorregressivo de ordem p pode ser escrito como onde c é uma constante e et é ruído branco. Isto é como uma regressão múltipla, mas com valores defasados ​​de yt como preditores. Referimo-nos a isto como um modelo AR (p). Modelos auto-regressivos são notavelmente flexíveis no manuseio de uma ampla gama de diferentes padrões de séries temporais. As duas séries na Figura 8.5 mostram séries de um modelo AR (1) e um modelo AR (2). Alterando os parâmetros phi1, dots, phip resulta em diferentes padrões de séries temporais. A variância do termo de erro e só mudará a escala da série, não os padrões. Figura 8.5: Dois exemplos de dados de modelos autorregressivos com diferentes parâmetros. Esquerda: AR (1) com yt 18 -0,8y et. Direita: AR (2) com yt 8 ​​1,3y -0,7y et. Em ambos os casos, et é normalmente distribuído ruído branco com média zero e variância um. Para um modelo AR (1): Quando phi10, yt é equivalente a ruído branco. Quando phi11 e c0, yt é equivalente a uma caminhada aleatória. Quando phi11 e cne0, yt é equivalente a uma caminhada aleatória com drift Quando ph1lt0, yt tende a oscilar entre valores positivos e negativos. Normalmente, restringimos modelos autorregressivos a dados estacionários e, em seguida, algumas restrições sobre os valores dos parâmetros são necessárias. Para um modelo AR (1): -1 lt phi1 lt 1. Para um modelo AR (2): -1 lt phi2 lt 1, phi1phi2 lt 1, phi2-phi1 lt 1. Quando pge3 as restrições são muito mais complicadas. R cuida dessas restrições ao estimar um modelo.

No comments:

Post a Comment